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3D MESH SEGMENTATION FOR CAD 

APPLICATIONS 
 

Abstract: 3D mesh segmentation is a fundamental 

process for Digital Shape Reconstruction in a variety 

of applications including Reverse Engineering, 

Medical Imaging, etc. It is used to provide a high level 

representation of the raw 3D data which is required 

for CAD, CAM and CAE. In this paper, it is presented 

an exhaustive overview of 3D mesh segmentation 
methodologies examining their suitability for CAD 

models. In particular, a classification of the various 

methods is given based on their corresponding 

underlying fundamental methodology concept as well 

as on the distinct criteria and features used in the 

segmentation process. 

Keywords: 3D objects, mesh segmentation, shape 

analysis. 

 

1. INTRODUCTION  
 

3D mesh segmentation is a crucial 

step in the pipeline of Digital Shape 

Reconstruction, for which the exploitation 

of high level semantics in 3D raw data is 

addressed, enabling a semantic richness 

useful for CAD, CAM and CAE purposes. 

Usually a 3D physical object is sampled 

with a laser scanner and the output is a set 

of 3D points which represent the surface of 

the object. This set is triangulated 
acquiring by this way a topological 

structure of the surface which is called a 

3D mesh. Segmentation is the process 

which provides the necessary organization 

of the data points by partitioning them into 

connected regions or parts that can be 

approximated by standard CAD surfaces 

(e.g. planes, cylinders, etc.) or volumetric 

primitives (e.g. super-ellipsoids). There is 

a variety of algorithms for 3D mesh 

segmentation, which can be grouped in 
two basic categories: 

 Surface-based: The 3D mesh is 

segmented into regions which 

represent distinct surfaces of the 

CAD model and can be 

approximated by various 

primitives like planes, cylinders, 
spheres, polynomials, etc. 

 Part-based: The 3D mesh is 

segmented into volumetric parts 

which can be approximated by 

volumetric primitives (e.g. super-

ellipsoids). 

The quality of segmentation is a 

crucial issue that is directly related to the 

corresponding application which imposes 

particular requirements. For surface-based 

algorithms it is usually required that (i) the 
boundaries of the segmented regions 

should be smooth; (ii) the extracted 

regions should be able to be approximated 

by smooth surfaces; and (iii) the 

boundaries where the regions meet should 

allow certain types of continuity to hold 

for the approximating surfaces. For part-

based algorithms a variety of criteria can 

be used in order to be able to extract the 

meaningful parts of the object. The quality 

of segmentation is also directly dependent 

on the type of the CAD object that is being 
processed. Different algorithms work 
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better for each CAD object type.  It is a 

critical step toward content analysis and 

mesh understanding. Although some 

supervised methods exist [1, 2], most 

existing techniques are fully automatic. 

According to recent states-of-the-art [3, 4], 

mesh segmentation techniques can be 
classified into two categories: surface-type 

(or geometric) methods and part type (or 

semantic) methods. In the first case, the 

algorithms are based on low level 

geometric information (e.g. curvature [5]) 

in order to define segments (i.e. regions) 

with respect to geometric homogeneity, 

while in the latter case, the algorithms aim 

at distinguishing segments that correspond 

to relevant features of the shape, by 

following higher level notions in human 

perception theory [6]. This kind of 
approach is particularly suited for object 

animation deformation and indexing 

applications, where the decomposition has 

to be meaningful. Although development 

of mesh segmentation algorithms for both 

approaches has drawn extensive and 

consistent attention, relatively little 

research has been done on segmentation 

evaluation. For the firrst approach 

(surface-type), some tools exist depending 

on the end application as texture mapping 
[7] or medical imaging [8]. Recently, two 

main works, Benhabiles et al. [9] and Chen 

et al. [10], have been proposed to study the 

quality assessment problem of part-type 

3D-mesh segmentation. Both works 

propose a benchmark for segmentation 

evaluation which is based on a ground-

truth corpus.  

The corpus is composed of a set of 

3D-models grouped in different classes 

and associated with several manual 
segmentations produced by human 

observers. These two benchmarks 

comprisethe ground-truth corpus and a set 

of similarity metrics, then the evaluation of 

a segmentation algorithm consists in 

measuring the similarity between the 

reference segmentations from the corpus 

and that obtained by this algorithm (on the 

same models). In this kind of benchmark 

the quality of the evaluation depends on 

the quality of the corpus but also on the 

quality of the segmentation similarity 

measure. This leads to conclude that the 

choice of an accurate measure is quite 

critical in order to provide a strict 
evaluation and to reject the real quality of 

an automatic segmentation with 

comparison to a manual one. In this 

context, less efforts were investigated to 

propose a reliable measure of mesh 

segmentation similarity. Indeed, the 

previous works [9, 10] focused their 

interests on the design of the ground-truth 

corpus and presented rather simple metrics 

su_ering from degeneracies and low 

discriminative power.  

Three dimensional Point Cloud 
(3DPC) is the collection of three 

dimensional coordinate system which are 

obtained by 3D scanners such as Light 

Detection and Ranging (LIDAR), laser 

range under and microsoft kinects. Each 

point usually contains x,y and z 

coordinates value to the shape and 

geometry of an object. The intensity value 

and RGB color value of the scene can be 

stored in the point cloud for the additional 

information. 3D point cloud segmentation 
is the technique of classifying point clouds 

into multiple isolated regions based on 

voxels salient characteristics like color or 

the intensity value [11]. Each region of the 

point cloud which have same 

characteristics will have the same label 

value. In machine vision segmentation of 

point cloud is important to analyze the 

scene in various aspects for the purpose of 

locating and recognizing objects in a scene 

and separating between interesting 
geometry (object) and not interesting 

object (background). In 2D subdividing the 

pixels or the digital images is called image 

segmentation. The image segmentation is 

usually more applicable in medical 

imaging for the purpose of locating tumors 

and treatment planning. 
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2. METHODS OF 3D MESH 

SEGMENTATION  
 

The segmentation of point cloud can 

be performed by two methods, one based 

single point technique and another one 

considering neighboring points attributes. 

There are various techniques and 

algorithm being developed and 

investigated for the segmentation of point 

cloud. There is neither a universal 

approach nor objective criteria to judge the 

state of the art technique for the 

segmentation method as the different 
methods are used for different purposes. 

Normally in order to segment a 3D point 

cloud, the point cloud are projected into 

2D panorama images and the 2D images 

are segmented applying certain image 

segmentation method. The segmented 2D 

coordinates are then mapped to 

corresponding 3D coordinates. In this 

paper all the results are based on 

segmentation of equi-rectangular 

panorama images projected from the point 
clouds. All the images are intensity 

images. The experiments was performed in 

3D toolkit which is an client point cloud 

processing software.  

Mesh segmentation has become an 

important and challenging problem in 

computer graphics, with applications in 

areas as diverse as modeling [6], 

metamorphosis [9, 10], compression [11], 

simplification [5], 3D shape retrieval, 

collision detection [3], texture mapping [2] 

and skeleton extraction [3]. Mesh, and 
more generally shape, segmentation can be 

interpreted either in a purely geometric 

sense or in a more semantics-oriented 

manner. In the first case, the mesh is 

segmented into a number of patches that 

are uniform with respect to some property 

(e.g., curvature or distance to a fitting 

plane), while in the latter case the 

segmentation is aimed at identifying parts 

that correspond to relevant features of the 

shape. Methods that can be grouped under 
the first category have been presented for 

example in [8, 5], and may serve as a pre-

processing for the recognition of 

meaningful features. Semantics-oriented 

approaches to shape segmentation have 

gained a great interest recently in the 

research community [4, 11, 12], because 

they can support parametrization or re-
meshing schemes, metamorphosis, 3D 

shape retrieval, skeleton extraction as well 

as the modeling by composition paradigm 

that is based on natural shape 

decompositions. It is rather difficult, 

however, to evaluate the performance of 

the different methods with respect to their 

ability to segment shapes into meaningful 

parts. This is due to the fact that the 

majority of the methods used in computer 

graphics are not devised for detecting 

specific features within a specific context, 
as for example is the case of form-feature 

recognition in product modeling and 

manufacturing [2]. Also, the shape classes 

handled in the generic computer graphics 

context are a broadly varying category: 

from virtual humans to scanned artefacts, 

from highly complex free-form shapes to 

very smooth and feature-less objects. 

Moreover, it is not easy to formally define 

the meaningful features of complex shapes 

in a non-engineering context and therefore 
the comparison of the different methods is 

mainly qualitative. Finally, shape 

segmentation methods are usually devised 

to solve a specific application problem, for 

example retrieval or parametrization, and 

therefore it is not easy to compare the 

efficacy of different methods for the shape 

segmentation itself.  

Mesh decomposition using fuzzy 

clustering and cuts [9, 10]. The key idea of 

this algorithm is to first find the 
meaningful components using a clustering 

algorithm, while keeping the boundaries 

between the components fuzzy. Then, the 

algorithm focuses on the small fuzzy areas 

and finds the exact boundaries which go 

along the features of the object. 

Mesh segmentation using feature 

point and core extraction [13]. This 
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approach is based on three key ideas. First, 

Multi-Dimensional Scaling (MDS) is used 

to transform the mesh vertices into a pose 

insensitive representation. Second, 

prominent feature points are extracted 

using the MDS representation. Third, the 

core component of the mesh is found. The 
core along with the feature points provide 

sufficient information for meaningful 

segmentation. 

Tailor: multi-scale mesh analysis 

using blowing bubbles [9, 10]. This 

method provides a segmentation of a shape 

into clusters of vertices that have a 

uniform behavior from the point of view of 

the shape morphology, analyzed at 

different scales. The main idea is to 

analyze the shape by using a set of spheres 

of increasing radius, placed at the vertices 
of the mesh; the type and length of the 

sphere-mesh intersection curve are good 

descriptors of the shape and can be used to 

provide a multi-scale analysis of the 

surface. 

Plumber: mesh segmentation into 

tubular parts [9, 10]. Based on the Tailor 

shape analysis, the Plumber method 

decomposes the shape into tubular features 

and body components and extracts, 

simultaneously, the skeletal axis of the 
features; tubular features capture the 

elongated parts of the shape, protrusions or 

wells, and are well suited for articulated 

objects. 

Hierarchical mesh segmentation 

based on fitting primitives (HFP) [9, 10]. 

Based on a hierarchal face clustering 

algorithm, the mesh is segmented into 

patches that best fit a pre-defined set of 

primitives; in the current prototype, these 

primitives are planes, spheres, and 
cylinders. Initially each triangle represents 

a single cluster; at each iteration, all the 

pairs of adjacent clusters are considered, 

and the one that can be better 

approximated with one of the primitives 

forms a new single cluster. The 

approximation error is evaluated using the 

same metric for all the primitives, so that it 

makes sense to choose which is the most 

suitable primitive to approximate the set of 

triangles in a cluster. The set of models 

examined in this work are medical models, 

CAD models, models of human figures in 

various postures, models of animals, and a 

miscellanea class of shapes. 
In the current state-of-the-art, 

integrating the images with 3D data like 

range images incorporates computer vision 

and photogrammetry in this area of 

research. Automatic 3D reconstruction 

from 3D point clouds or range image is 

still one of the active research areas that 

has many applications in forestry, urban 

planning, tourist information systems and 

so on. 3D data measurements are grouped 

with respect to their similarity measures to 

define meaningful, coherent and connected 
segments. Acquisition of the high accurate 

and dense 3D data can assist us in the 

direction of automatic extraction of 

building models. Image matching can be 

considered a renaissance in the modern 

photogrammetry due to generating dense 

and high accurate point clouds with low 

price in comparison with LiDAR data. 

Recently, many algorithms are focused on 

the extraction of planar surfaces especially 

extraction of roof facets for 3D building 
reconstruction that related works will be 

reviewed in the next section. However, 

building extraction is still challenging 

issue due to the complex building roofs, 

occlusions and shadows.  

Availability of the 3D structured data 

for each pixel and intensity values from 

the high resolution aerial images in 

addition to usage of high performance 

computer can assist us to deal with the 

challenging issues and achieving better 
segmentation results with low price. Thus, 

this combination can be considered the 

important step to reach the goal of 

automatic 3D reconstruction and object 

recognition. The goal of this work is to 

improve and extend surface growing based 

segmentation in the X-Y-Z image in the 

form of 3D structured data with 
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combination of spectral information of 

RGB and grayscale image to extract 

building roofs, streets. The advent of 

affordable and accurate range sensing 

hardware has had a tremendous impact on 

the development of fundamental skills of 

mobile autonomous robots. Basic 
capabilities such as navigation, obstacle 

avoidance, and localization and mapping 

in indoor and outdoor environments can 

nowadays be considered solved thanks to 

the availability of 2D laser range finders 

and the development of powerful 

algorithms that process this kind of data. 

As mobile robotics is gradually moving 

towards more complex scenarios such as 

mapping and interpretation of 3D 

environments, researchers are only now 

beginning to harvest 
the rich information contained in 3D 

range data. The quest for algorithms that 

efficiently process, abstract and interpret 

this data involves, among other things, a 

vivid knowledge exchange with several 

related fields, such as computer graphics 

and computer vision. Relevant applications 

in mobile robotics encompass a wide 

spectrum, that ranges from 3D mapping of 

buildings and surface reconstruction of 

architectural heritage to model extraction 
for manipulation and semantic mapping in 

household environments. Given the 

available sensing modalities, a common 

problem is the detection and interpretation 

of medium-sized objects, such as living-

room furniture, kitchen appliances etc. 

Existing works often make use of 

extremely dense point clouds on the order 

of millions of points, recorded from 

several view points. This data is then 

processed to extract very detailed 
geometric models of objects in the 

environment and finally use the generated 

models to do something useful. While this 

is possible for an initial offline learning 

phase, in which the robot is allowed to 

survey an environment un-interrupted, the 

acquisition of such detailed data is 

infeasible for everyday operation. In many 

cases, a robot that is to perform some 

useful task in a domestic setting must be 

able to repeatedly assess the state of its 

environment by performing a quick 3D 

scan and interpreting it. In this article, we 

consider the scenario of a robot using an 

actuated 2D laser range finder to acquire a 
relatively sparse point cloud within several 

seconds. A second issue that has been 

neglected in most works using actuated 2D 

laser range finders to acquire 3D data, is 

the fact that algorithms are usually only 

developed and tested for the sampling 

characteristics encountered in the specific 

scanning setup. The many different ways 

to actuate or sweep a 2D scanner may 

yield scans with very different densities 

and distinct sampling characteristics. The 

applicability of these algorithms to data 
acquired with a different setup is therefore 

not guaranteed. The main contribution of 

this article is that it addresses both of the 

aforementioned issues: the segmentation 

framework operates on relatively sparse 

data that is acquired and segmented within 

several seconds. More importantly, it 

yields consistent results across point cloud 

data obtained with different characteristic 

scan trajectories using one set of 

parameters for both simulated as well as 
real data. 

 

 

3. COMPARING SHAPE MODELS 

OF CAD 
 

Most CAD models are solid models that 
are defined parametrically. Due to the 

development of rapid prototyping and 

visualization areas, approximate shape 

models represented by a polygonal mesh 

and dense point clouds are becoming 

another useful alternative to CAD 

representations. Shape model 

representations of 3D objects are 

approximate models characterized by a 

mesh of polygons or a cloud of points for 

presentation or rendering purposes in 
computer graphics. Rather than exact 
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parametric equations, polygons or densely 

sampled points are used to approximate 

curved surfaces. Only the geometry of 

triangles and points are stored without any 

topological information. In contrast to 

proprietary solid model formats, open 

mesh file formats such as VRML, STL, 
and ASCII point clouds are widely 

available. Although shape models are not 

suitable for many tasks in CAD/CAM 

systems, polygonal meshes can serve as 

the lowest common denominator in 

comparing CAD models. CAD mesh 

models can be generated by faceting solid 

models from different modeling systems. 

Shapemodels of objects can also be 

acquired easily by using 3D scanners or 

CT to enable comparison of digital and 

physical artifacts. From the polygon mesh, 
different transformation invariant 

attributes can be extracted as the means of 

similarity among 3D models. Thompson et 

al. [12] examined the reverse engineering 

of designs by generating surface and 

machining feature information off of range 

data collected from machined parts. The 

method of Osada et al. [13] creates an 

abstraction of the 3D model as a 

probability distribution of samples from a 

shape function acting on the model. 
Novotni and Klein [14] demonstrated the 

use of 3D Zernike descriptors. Kazhdan et 

al. [15] compared 3D models with 

spherical harmonics. While these 

techniques target general 3D models, Ip et 

al. [16, 17] focused on comparing shape 

models of CAD with shape distributions. 

Iyer et al. [18] presented a CAD oriented 
search system, based on shape, 

voxelization and other approaches. Pal et 

al. [19] extracted features from CAD 

models using genetic algorithms. Cardone 

et al. [20] compared prismatic machined 

parts by using machining features. Various 

database techniques for CAD are discussed 

in [6, 7, 12]. Recently, research efforts in 

industry and academia are examining the 

use machine learning techniques to train a 

3D shape recognition system with CAD 

data. Work in industry has explored the 
use of neural networks to identify parts 

based on multiple 2D views [21]. Hou et 

al. [22] attempted to use shape information 

to cluster the semantics of parts with 

SVMs. In the context of shape model 

matching, Elad [23] used linear SVMs to 

adjust retrieval results from a 3D shape 

database according to users’ feedback. Ip 

et al. [24] classified models according to 

manufacturing processes by a curvature 

descriptor and SVMs. 
 

 
Figure 1 - 3D meshes of CAD models: example of a model that consists of free-form 

surfaces, the dual graph a mesh denoted by red lines and segmentation of a mechanical part 
 
There are recent approaches that 

employ partial matching of models. 

Bespalov et al. [25] used scale-space 

representations to segment different 

features of meshes. Funkhouser et al. [26] 

partially matched shape features according 

to different priorities. More extensive 

surveys and literature reviews in this area 

can be found in references [5], [18], and 

[16]. The availability of 3D scanning 
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technologies (Laser, white light, and CT 

scanners) has stimulated the interest in 3D 

point cloud alignment and registration. 

Given two point clouds with overlapping 

regions, registration based on iterative 

closest points (ICP) aims to rotate and 

translate a point cloud to match the other 
one. Because laser scanners and range 

finders often come with limited measure 

volume, registration becomes a critical 

process when acquiring 3D images of large 

scale parts in the industry. Since Besl et. al 

[27] published the original ICP algorithm, 

there have been many variations with 

different kind performance improvements 

in some of the recent work. Rusinkiewicz 

et al. [28] published a survey of the ICP 

techniques and demonstrated a fast variant 

that registers point clouds in real time. 
Mitra et al. [28] optimized the registration 

according to the point cloud geometry. 

Research in partitioning triangular meshes 

into separated meaningful surface patches 

is of great interest for many applications, 

such as, shape simplification, compression, 

analysis, and recognition. Segmentation of 

Point Cloud and CAD Mesh into Surface 

Patches Point clouds and CAD meshes are 

segmented into surface patches using an 

identical algorithm. It is important to apply 
the same approach to both the point cloud 

and the CAD mesh to ensure the similar 

surface patches are produced from the 

matching point cloud and CAD mesh. 

Partial matching of 3D models is a 

challenging problem for many global 

shape descriptors. The shape of a partial 

scan often differs from its complete scan 

counterpart, e.g. the change of total length, 

width, and height. Hence, many global 

shape descriptors will discriminate a 
model against its own fragments. In 

addition, many 3D scans are imperfect. 

Hence, lengthy post-processing is often 

required to fill holes and remove noises 

from the point cloud. In attempt to 

alleviate these issues, we first segment the 

point clouds and CAD meshes into local 

patches and use them as matching units. 

This approach removes the gross shape 

dependency problem by separating both 

the partial scan and the CAD meshes into 

similar local surface patches that can 

directly be compared. Any extra patches 

from the CAD mesh will be ignored during 

evaluation. The segmentation procedure 
also allows us to discard insignificant 

patches, which are possibly noise, from the 

scanned point cloud. The surface patches 

of point clouds and meshes are created 

according to their surface curvature values. 

This simple method is generally sufficient 

to partition CAD surfaces. For complex 

freeform surfaces, more sophisticated or 

semantic based segmentation algorithm 

may be required in future. Curvature 

defines the variation of surfaces patches 

and it is a popular criterion among many 
previous segmentation approaches. The 

identical segmentation algorithm is applied 

to both point clouds and CAD meshes. 

This allows similar patches to be generated 

on corresponding point clouds and CAD 

meshes. It is very important to ensure the 

patches of the matching point clouds and 

meshes are close enough. These patches 

will be used as matching primitives and 

they will be compared with one another. 

Since the surface patches are similar, it is 
not necessary to perform many-to-many 

matching on the surface patches. Total 

curvature is computed from the normal 

vectors distribution of local neighborhoods 

on the surface. Normal vectors on the 

mesh model are sampled according to the 

mesh connectivity, for smooth meshes, 

normal vectors in a 1-ring neighborhood 

are sufficient for curvature computation. 

At the same time, normal vectors on the 

point cloud are estimated by normals of 
the best fitted planes of small 

neighborhoods of points. Following the 

method described in [21], the total 

curvature of a small neighborhood can be 

estimated by the norm of the covariance 

matrices of its normal vectors. 

Neighboring points and triangles that share 

similar curvature are grouped into patches. 
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For CAD models, the segmentation of the 

surface into patches of simple geometry is 

usually considered a pre-processing for the 

more complex recognition of form-

features; in this context it is possible, or 

easier, to define precise geometric and 

morphological rules to detect certain 
configurations, even if the problem is not 

fully solved [2].  

Methods like Plumber are also based 

on an a-priori knowledge about the 

features we want to extract, that are in this 

case defined as generalized sweep-like 

features. Plumber, indeed, performs better 

on features with elongation axis larger than 

section axis: in the tiger model, for 

instance, only the tail is recognized 

correctly as a tubular feature while the 

body is not identified as a tubular feature 
because its section is almost equivalent to 

its length. For articulated objects that are 

used in applications such as skeleton 

extraction, metamorphosis and retrieval, it 

is expected that the meshes be segmented 

at their joints. In this case, deep 

concavities as well as the size of the 

components, indicate the locations of 

segment boundaries.  As discussed in [14], 

a segmentation can be partitioned into two 

sub-problems: the extraction of the 
segments and the smooth refinement of the 

cuts. There are, however, methods, such as 

Plumber that guarantee by definition a 

smooth boundary. For other methods, that 

do not inherently produce smooth 

boundaries, a post-processing stage that 

refines the boundaries can be added. This 

was done, for instance in [14] and [13], 

where a minimum cut algorithm was 

applied to the initial segmentation. It is 

important to mention, however, that not all 
applications require smooth boundaries. 

Multi-scale segmentations can be exploited 

to get a global segmentation. For example, 

the segmentation into patches of uniform 

behavior provided by Tailor highlights 

well detail-features rather than bigger 

shape components, but the persistence of 

the labeling across different scales give 

less sparse clusters [22]. 

Segmentation as an important part of 
data processing is applied on the various 

kinds of data sets like 3D point clouds or 

range image to partition data sets into 

meaningful, disjoint and connected 

segments with homogenous property. 

Hence, the purpose of the segmentation is 

to group points or pixels with similar 

features into segments. Segments are 

smooth surfaces that are achieved by 

grouping neighboring points or pixels with 

similarity measures, such as the direction 

of a locally estimated surface normal or 
intensity values of each pixel. Generally 

speaking, point cloud segmentation can be 

considered a difficult subject, especially in 

presence of the noise. In addition the gaps 

between point clouds (mismatch points 

from image matching for each image 

pixel) and varying point densities make it 

more problematic. Methods of surface 

extraction can be categorized in two main 

groups. Firstly, surface parameters can be 

estimated directly by clustering or finding 
maximum parameter in the parameter 

space. Secondly, point clouds can be 

segmented on the basis of proximity of the 

point clouds or similarity measures like 

locally estimated surface normals [3]. In 

other word, range segmentation problem 

can be categorized in two main 

approaches: region-based and edge-based 

segmentation problem. Furthermore, 

region-based segmentation problem can be 

divided in two main groups: parametric 
model-based segmentation algorithms and 

region-growing algorithms [4]. 
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Figure 2 - Adaptive segmentation, segmented corridor and refining segmentations by 

different criteria (the initial curves are in red and the resulting curves are in blue) 
 

4. EDGE-BASED 

SEGMENTATION MODELS IN 

CAD 

 
Edge based segmentation is a special 

case of region growing algorithms since 

points are bounded within the closed 

boundaries and connectivity between them 

is not on the basis of spatial relations [5]. 

The algorithm starts with extracting the 

edges along the boundaries of different 
regions. Edges can be detected while 

changes in local surface properties (surface 

normals, gradients, principal curvatures) 

exceed a pre-defined threshold. This 

procedure followed by grouping the points 

inside the boundaries and result the 

segmented regions. As a drawback of 

edge-based segmentation algorithm, in 

many cases, they generate non-closed 

boundaries. Moreover, it is difficult to 

detect discontinuity in the curved surfaces 
due to smoothness in this kind of surfaces 

which lead to under-segmentation in the 

range image [4]. Furthermore, only 

measurements close to the edges are taking 

into account and other available 

measurements are not considered as well 

[6]. In addition, these algorithms are very 

sensitive to the noise in the range data. 

Clustering represents another approach of 

range image segmentation in the feature 

space and can be considered one of the 

main categories of the region-based 
segmentation problem. In clustering 

approach, parameters of the surfaces are 

introduced and then point clouds are 

grouped based on surface parameters. This 

algorithm is performed by subdividing the 

points into disjoint regions with 

homogeneous property. The points inside 

each region share similar property which is 

different from other regions and therefore 

distinguish each region from other regions. 

Clustering is similar to Hough transform 

approach in case of working in the feature 

space. However, unlike the Hough 

transform, the attributes are calculated 
locally and the risk of grouping points that 

are not connected is very low [7]. 

Moreover, unlike the Hough transform, in 

clustering approach, with consideration of 

proximity, just points with similar surface 

normals are clustered together [9]. 3D 

Hough transform can be considered the 

subset of clustering approach. The purpose 

of the Hough transform technique is to 

find objects by a voting procedure. This 

voting procedure is carried out in a 
parameter space (Hough space). In 3D 

Hough transform, high accumulator value 

gives the hypotheses for detecting planes. 

As a drawback of this approach, points’ 

connectivity is not taken into the account 

and many spurious plane surfaces may be 

extracted from those points that are not in 

the same plane with the given point [9]. 

Moreover, precision or resolution of 

parameter space seems problematic in this 

approach. Geometric primitives-based 

segmentation belongs to clustering 
approach. This method is suited for fitting 

higher-order surfaces to the range data and 

not just planar regions. In [14] it is 

described parametric surface model-based 

segmentation from the range image based 

on Surface Selection Criterion (SSC) that 

is carried out by minimizing the strain 
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energy of the thin surface. In order to 

choose the appropriate surface model, 

surface is fitted to the measurements and 

sum of squared residuals between the fitted 

surface and range data will be small. The 

perfect fitness of the surface to the 

measurements is achieved by bending and 
twisting the surface till it will be closer to 

the measurements recognition is carried 

out at the same time [10]. As a drawback 

of the geometric primitives-based 

segmentation is that the number of surface 

types directly affects on the segmentation 

results [11]. Surface growing in object 

space is the equivalent of region growing 

in image space. Surface growing in object 

space can be performed by grouping point 

clouds which are spatially close and share 

similar measure properties like the 
direction of a locally estimated surface 

normal, gradient and the principal 

curvatures. As a result of surface growing 

method, point clouds are segmented into 

multiple surfaces. Surface growing 

algorithm starts from the optimal seed 

points and surfaces extend to neighboring 

point clouds based on pre-defined criteria. 

In this fashion, selection of the seed point 

is important step and final segmentation 

results are dependent on it. In order to find 
optimal seed point, firstly, plane equation 

is defined for each seed point and its 

neighboring point clouds. Then, the 

residuals (orthogonal distances of the point 

clouds to the best fitted plane) are 

computed. The point within the fitted 

plane with lowest square sum of residuals 

is considered the optimal seed point. 

Outliers would affect on the results of 

surfaces normal and consequently on the 

square sum of residuals which leads to a 
failure of detecting proper seed points of 

surfaces.  

Therefore, robust least squares 

adjustment is applied to detect the optimal 

seed point even in the presence of outliers. 

In this approach, firstly, the plane fit to the 

surface points and their neighborhood. The 

candidate point that its orthogonal distance 

to the fitted plane is below the predefined 

threshold is accepted as a new surface 

point. Due to increase the efficiency of the 

program while using low accurate point 

clouds, the plane equation is updated after 

adding the new candidate point to the 

corresponding surface points. The 
neighborhood threshold and residual 

threshold are used to determine the 

smoothness of the fitted plane. Secondly, 

the local surface normal at each point is 

compared with its neighboring points. The 

neighboring points are accepted if the 

angle between its surface normal and 

normal at the neighboring point is below 

the pre-defined threshold. As a privilege of 

surface based algorithms in comparison 

with edge based algorithm is no need to 

identify the surface boundaries at the 
preliminary step. Due to their easy 

implementation and well time 

performance, surface growing algorithms 

are the prevailing method for point cloud 

segmentation. However, the weakness of 

this approach is connected with a proper 

choice of the seed points. Furthermore, 

selecting different seed points may results 

different segmentation regions [12]. In 

addition, this algorithm tends to generate 

distorted boundaries due to segment 
objects in the region level instead of pixel 

level [4]. 

 

 

 
Figure 3 - Corresponding segmented 

point cloud and CAD mesh model 



 

                                                  8
th
 IQC May, 23 2014                                               627 

 
Figure 4 - Aligned point cloud with matching CAD model 

 

5. CONCLUSION 
 

Point clouds acquired by 3D scanners 

can immediately be used as targets in CAD 

database queries This approach brings 

together 3D scanning and shape based 

CAD models matching and retrieval ideas.. 

General shape matching challenges like 

rotational variance and incomplete shape 
information are resolved by the 

segmentation and local surface patches 

alignment processes. This shows that it is 

plausible to efficiently look up matching 

CAD models using 3D scanning. To 

further accelerate the matching process, 

more rotational invariant attributes may be 

included during the patch matching stage. 

One alternative approach is to include a 

shape descriptor for each surface patch, 

while this is suitable for complex surface 
patches, it may be too complicated for 

engineering artifacts with only specific 

classes of surfaces. By including more 

discriminating attributes for specific 

surfaces, we believe the system’s 

performance can further be tuned. On the 

other hand, as oppose to a fully automatic 

system one may allow the users to 

interactively rank the importance of 

surface patches generated from point 

cloud. This changes the alignment order 

and may lead the system to discover an 
appropriate alignment faster. Robust 

estimation has been improved the result of 

surface normals from least squares plane 

fitting by eliminating the effects of the 

noises and outliers. However, it also 

increased the runtime of the program with 

recalculating the surface normals. First 

methods of segmenting surface normals 

worked well for the dense and accurate 

point clouds and furthermore, was utilized 

to extract streets due to not varying the 

surface normals in the flat areas. The 

second methods were carried out for the 

extraction of building roofs and worked 

well in most cases and especially 

applicable in case of low accurate point 

clouds. Availability of the 3D coordinates 

for each image pixel in the form of X-Y-Z 

image in addition to intensity values from 
RGB image or grayscale image can assist 

us to better interpret and recognize the 

objects and it can be considered the good 

combination in order to reach the goal of 

automatic 3D city reconstruction and 

object recognition. Vegetation extraction 

has been led to failure in some image 

pixels that their intensity values differed 

too much from their realistic color in the 

nature. The novelty of this work 

comparing to previous work is proceeding 

of surface growing based approach with 
unlimited neighboring points and there of 

no need of merging surface patches. In 

addition, robustness of the computation of 

surface normals assists us to discard 

outliers. Furthermore, segmentation in 

object space is applied in two different 

methods to increase the run time of the 

program in the procedure. As a 

recommendation for the future work, 

performing the segmentation procedure in 

object space and image space 
simultaneously by the usage of 3D point 

clouds in the form of X-Y-Z image in 

company of gray value from grayscale 

image may lead to better results of the 

segmentation and reach closer to the goal 

of automatic 3D city modeling and object 
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recognition. In addition, performing 

segmentation in object space and thereafter 

in image space was also successful. 
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